These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering.
    Author: Hu Z, Liu Z, Li L, Quan B, Li Y, Li J, Gu C.
    Journal: Small; 2014 Oct 15; 10(19):3933-42. PubMed ID: 24995658.
    Abstract:
    Fabricating perfect plasmonic nanostructures has been a major challenge in surface enhanced Raman scattering (SERS) research. Here, a double-layer stacked Au/Al2O3@Au nanosphere structures is designed on the silicon wafer to bring high density, high intensity "hot spots" effect. A simply reproducible high-throughput approach is shown to fabricate feasibly this plasmonic nanostructures by rapid thermal annealing (RTA) and atomic layer deposition process (ALD). The double-layer stacked Au nanospheres construct a three-dimensional plasmonic nanostructure with tunable nanospacing and high-density nanojunctions between adjacent Au nanospheres by ultrathin Al2O3 isolation layer, producing highly strong plasmonic coupling so that the electromagnetic near-field is greatly enhanced to obtain a highly uniform increase of SERS with an enhancement factor (EF) of over 10(7). Both heterogeneous nanosphere group (Au/Al2O@Ag) and pyramid-shaped arrays structure substrate can help to increase the SERS signals further, with a EF of nearly 10(9). These wafer-scale, high density homo/hetero-metal-nanosphere arrays with tunable nanojunction between adjacent shell-isolated nanospheres have significant implications for ultrasensitive Raman detection, molecular electronics, and nanophotonics.
    [Abstract] [Full Text] [Related] [New Search]