These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Atmospheric oxidation mechanism of chlorobenzene.
    Author: Wu R, Wang S, Wang L.
    Journal: Chemosphere; 2014 Sep; 111():537-44. PubMed ID: 24997963.
    Abstract:
    The atmospheric oxidation mechanism of chlorobenzene (CB) initiated by the OH radicals is investigated at M06-2X/6-311++G(2df, 2p) and ROCBS-QB3 levels. The oxidation is initiated by OH addition to the ortho (∼50%), para (∼33%) and meta (∼17%) positions, forming CB-OH adducts as R2, R3, and R4; while the ipso-addition is negligible (∼0.2%). The reactions of the CB-OH adducts with the atmospheric oxygen are further investigated in detail by coupling the unimolecular reaction rate theory calculations with master-equation (RRKM-ME). The CB-OH adducts react with O2 either by irreversible H-abstraction to form chlorophenol and HO2 or by reversible additions to form CB-OH-O2 radicals, which subsequently cyclize to bicyclic radicals. RRKM-ME calculations show that the addition reactions of CB-OH and O2 at the atmospheric pressure are close to but not yet reach their high-pressure-limits. The RRKM-ME simulations predict the yields of 93%, 38%, and 74% for ortho-, meta- and para-chlorophenols from the reactions of O2 with R2, R3 and R4, being lower than their high-pressure-limit yields of 95%, 48%, an 80%, respectively. Overall, the yield of chlorophenols is determined as 72% at the atmospheric pressure.
    [Abstract] [Full Text] [Related] [New Search]