These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stable sulfur and oxygen isotope fractionation of anoxic sulfide oxidation by two different enzymatic pathways.
    Author: Poser A, Vogt C, Knöller K, Ahlheim J, Weiss H, Kleinsteuber S, Richnow HH.
    Journal: Environ Sci Technol; 2014 Aug 19; 48(16):9094-102. PubMed ID: 25003498.
    Abstract:
    The microbial oxidation of sulfide is a key reaction of the microbial sulfur cycle, recycling sulfur in its most reduced valence state back to more oxidized forms usable as electron acceptors. Under anoxic conditions, nitrate is a preferential electron acceptor for this process. Two enzymatic pathways have been proposed for sulfide oxidation under nitrate reducing conditions, the sulfide:quinone oxidoreductase (SQR) pathway and the Sox (sulfur oxidation) system. In experiments with the model strains Thiobacillus denitrificans and Sulfurimonas denitrificans, both pathways resulted in a similar small sulfur and oxygen isotope fractionation of -2.4 to -3.6‰ for (34)S and -2.4 to -3.4‰ for (18)O. A similar pattern was detected during the oxidation of sulfide in a column percolated with sulfidic, nitrate amended groundwater. In experiments with (18)O-labeled water, a strong oxygen isotope fractionation was observed for T. denitrificans and S. denitrificans, indicating a preferential incorporation of (18)O-depleted oxygen released as water by nitrate reduction to nitrogen. The study indicates that nitrate-dependent sulfide oxidation might be monitored in the environment by analysis of (18)O-depleted sulfate.
    [Abstract] [Full Text] [Related] [New Search]