These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DNA base detection using a single-layer MoS2.
    Author: Farimani AB, Min K, Aluru NR.
    Journal: ACS Nano; 2014 Aug 26; 8(8):7914-22. PubMed ID: 25007098.
    Abstract:
    Nanopore-based DNA sequencing has led to fast and high-resolution recognition and detection of DNA bases. Solid-state and biological nanopores have low signal-to-noise ratio (SNR) (< 10) and are generally too thick (> 5 nm) to be able to read at single-base resolution. A nanopore in graphene, a 2-D material with sub-nanometer thickness, has a SNR of ∼3 under DNA ionic current. In this report, using atomistic and quantum simulations, we find that a single-layer MoS2 is an extraordinary material (with a SNR > 15) for DNA sequencing by two competing technologies (i.e., nanopore and nanochannel). A MoS2 nanopore shows four distinct ionic current signals for single-nucleobase detection with low noise. In addition, a single-layer MoS2 shows a characteristic change/response in the total density of states for each base. The band gap of MoS2 is significantly changed compared to other nanomaterials (e.g., graphene, h-BN, and silicon nanowire) when bases are placed on top of the pristine MoS2 and armchair MoS2 nanoribbon, thus making MoS2 a promising material for base detection via transverse current tunneling measurement. MoS2 nanopore benefits from a craftable pore architecture (combination of Mo and S atoms at the edge) which can be engineered to obtain the optimum sequencing signals.
    [Abstract] [Full Text] [Related] [New Search]