These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamics of ventilatory response to step changes in PCO2 of blood perfusing the brain stem. Author: Berkenbosch A, Ward DS, Olievier CN, DeGoede J, VanHartevelt J. Journal: J Appl Physiol (1985); 1989 May; 66(5):2168-73. PubMed ID: 2501275. Abstract: The technique of artificial brain stem perfusion was used to assess the ventilatory response to step changes in PCO2 of the blood perfusing the brain stem of the cat. A two-channel roller pump and a four-way valve allow switching the gas exchanger into and out of the extracorporeal circuit, which controlled the perfusion to the brain stem. Seven alpha-chloralose-urethan-anesthetized cats were studied, and 25 steps of increasing and 23 steps of decreasing PCO2 were analyzed. A model consisting of a single-exponential function with time delay best described the ventilatory response. The time delays 11.7 +/- 8.1 and 6.4 +/- 6.8 (SD) s (obtained from mean values per cat) for the step into and out of hypercapnia, respectively, were not significantly different (P = 0.10) and were of the order of the transit time of the tubing from valve to brain stem. The steady-state CO2 sensitivities obtained from the on- and off-responses were also not significantly different (P = 0.10). The time constants 87 +/- 25 and 150 +/- 51 s, respectively, were significantly different (P = 0.0002). We conclude that the central chemoreflex is adequately modeled by a single component with a different time constant for on- and off-responses.[Abstract] [Full Text] [Related] [New Search]