These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Atrial natriuretic peptide locally counteracts the deleterious effects of cardiomyocyte mineralocorticoid receptor activation.
    Author: Nakagawa H, Oberwinkler H, Nikolaev VO, Gaßner B, Umbenhauer S, Wagner H, Saito Y, Baba HA, Frantz S, Kuhn M.
    Journal: Circ Heart Fail; 2014 Sep; 7(5):814-21. PubMed ID: 25027872.
    Abstract:
    BACKGROUND: The endocrine balance between atrial natriuretic peptide (ANP) and the renin-angiotensin-aldosterone system is critical for the maintenance of arterial blood pressure and volume homeostasis. This study investigated whether a cardiac imbalance between ANP and aldosterone, toward increased mineralocorticoid receptor (MR) signaling, contributes to adverse left ventricular remodeling in response to pressure overload. METHODS AND RESULTS: We used the MR-selective antagonist eplerenone to test the role of MRs in mediating pressure overload-induced dilatative cardiomyopathy of mice with abolished local, cardiac ANP activity. In response to 21 days of transverse aortic constriction, mice with cardiomyocyte-restricted inactivation (knockout) of the ANP receptor (guanylyl cyclase [GC]-A) or the downstream cGMP-dependent protein kinase I developed enhanced left ventricular hypertrophy and fibrosis together with contractile dysfunction. Treatment with eplerenone (100 mg/kg/d) attenuated left ventricular hypertrophy and fully prevented fibrosis, dilatation, and failure. Transverse aortic constriction induced the cardiac expression of profibrotic connective tissue growth factor and attenuated the expression of SERCA2a (sarcoplasmic reticulum Ca(2+)-ATPase) in knockout mice, but not in controls. These genotype-dependent molecular changes were similarly prevented by eplerenone. ANP attenuated the aldosterone-induced nuclear translocation of MRs via GC-A/cGMP-dependent protein kinase I in transfected HEK 293 (human embryonic kidney) cells. Coimmunoprecipitation and fluorescence resonance energy transfer experiments demonstrated that a population of MRs were membrane associated in close interaction with GC-A and cGMP-dependent protein kinase I and, moreover, that aldosterone caused a conformational change of this membrane MR/GC-A protein complex which was prevented by ANP. CONCLUSIONS: ANP counter-regulates cardiac MR activation in hypertensive heart disease. An imbalance in cardiac ANP/GC-A (inhibition) and aldosterone/MR signaling (augmentation) favors adverse cardiac remodeling in chronic pressure overload.
    [Abstract] [Full Text] [Related] [New Search]