These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A 3D mathematical model to predict spinal joint and hip joint force for trans-tibial amputees with different SACH foot pylon adjustments. Author: Yu CH, Hung YC, Lin YH, Chen GX, Wei SH, Huang CH, Chen CS. Journal: Gait Posture; 2014 Sep; 40(4):545-8. PubMed ID: 25042463. Abstract: A solid-ankle cushioned heel (SACH) foot is a non-joint foot without natural ankle function. Trans-tibial amputees may occur toe scuffing in the late swing phase due to a lack of active dorsiflexion. To address this problem, clinical guidelines suggests shortening the pylon to produce a smooth gait. However, this causes a leg length discrepancy, induces asymmetry in the hip joint, and causes an overload of L5/S1 joint force. Therefore, this study aimed to investigate the influence of different prosthesis pylons on the hip joint and L5/S1 joint forces. Ten subjects were recruited using leg length for normalisation. Four different pylon reductions (0%, 1%, 2%, and 3%) were used for gait analysis. A Vicon system and force plates were used to collect kinematic data and ground reaction force, respectively. The software package MATLAB was used to create a mathematical model for evaluating the symmetry and force of the hip joint and the low back force of the L5/S1 joint. The model was validated by the correlation coefficient (CC=0.947) and root mean square (RMS=0.028 BW). The model estimated that the 1% group had a symmetrical hip joint force and a lower L5/S1 joint force in the vertical direction. This study indicates that a 1% pylon shortening on a SACH prosthesis is appropriate for a trans-tibial amputee.[Abstract] [Full Text] [Related] [New Search]