These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Author: Lin YG, Hsu YK, Chen YC, Lee BW, Hwang JS, Chen LC, Chen KH.
    Journal: ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962.
    Abstract:
    We report the first demonstration of cobalt phosphate (Co-Pi)-assisted molybdenum-doped zinc oxide nanorods (Zn(1-x)Mo(x)O NRs) as visible-light-sensitive photofunctional electrodes to fundamentally improve the performance of ZnO NRs for photoelectrochemical (PEC) water splitting. A maximum photoconversion efficiency as high as 1.05% was achieved, at a photocurrent density of 1.4 mA cm(-2). More importantly, in addition to achieve the maximum incident photon to current conversion efficiency (IPCE) value of 86%, it could be noted that the IPCE of Zn(1-x)Mo(x)O photoanodes under monochromatic illumination (450 nm) is up to 12%. Our PEC performances are comparable to those of many oxide-based photoanodes in recent reports. The improvement in photoactivity of PEC water splitting may be attributed to the enhanced visible-light absorption, increased charge-carrier densities, and improved interfacial charge-transfer kinetics due to the combined effect of molybdenum incorporation and Co-Pi modification, contributing to photocatalysis. The new design of constructing highly photoactive Co-Pi-assisted Zn(1-x)Mo(x)O photoanodes enriches knowledge on doping and advances the development of high-efficiency photoelectrodes in the solar-hydrogen field.
    [Abstract] [Full Text] [Related] [New Search]