These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of nano-sized manganese oxides in the oxygen-evolution reactions by manganese complexes: towards a complete picture.
    Author: Najafpour MM, Hołyńska M, Shamkhali AN, Kazemi SH, Hillier W, Amini E, Ghaemmaghami M, Jafarian Sedigh D, Nemati Moghaddam A, Mohamadi R, Zaynalpoor S, Beckmann K.
    Journal: Dalton Trans; 2014 Sep 14; 43(34):13122-35. PubMed ID: 25046248.
    Abstract:
    Eighteen Mn complexes with N-donor and carboxylate ligands have been synthesized and characterized. Three Mn complexes among them are new and are reported for the first time. The reactions of oxygen evolution in the presence of oxone (2KHSO5·KHSO4·K2SO4) and cerium(iv) ammonium nitrate catalyzed by these complexes are studied and characterized by UV-visible spectroscopy, X-ray diffraction spectrometry, dynamic light scattering, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, transmission electron microscopy, scanning electron microscopy, membrane-inlet mass spectrometry and electrochemistry. Some of these complexes evolve oxygen in the presence of oxone as a primary oxidant. CO2 and MnO4(-) are other products of these reactions. Based on spectroscopic studies, the true catalysts for oxygen evolution in these reactions are different. We proposed that for the oxygen evolution reactions in the presence of oxone, the true catalysts are both high valent Mn complexes and Mn oxides, but for the reactions in the presence of cerium(iv) ammonium nitrate, the active catalyst is most probably a Mn oxide.
    [Abstract] [Full Text] [Related] [New Search]