These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lead-iodide nanowire perovskite with methylviologen showing interfacial charge-transfer absorption: a DFT analysis. Author: Fujisawa J, Giorgi G. Journal: Phys Chem Chem Phys; 2014 Sep 07; 16(33):17955-9. PubMed ID: 25050419. Abstract: Methylviologen lead-iodide perovskite (MVPb2I6) is a self-assembled one-dimensional (1-D) material consisting of lead-iodide nanowires and intervening organic electron-accepting molecules, methylviologen (MV(2+)). MVPb2I6 characteristically shows optical interfacial charge-transfer (ICT) transitions from the lead-iodide nanowire to MV(2+) in the visible region and unique ambipolar photoconductivity, in which electrons are transported through the three-dimensional (3-D) organic network and holes along the 1-D lead-iodide nanowire. In this work, we theoretically study the electronic band-structure and photocarrier properties of MVPb2I6 by density functional theory (DFT) calculations. Our results clearly confirm the experimentally reported type-II band alignment, whose valence band mainly consists of 5p (I) orbitals of the lead-iodide nanowires and the conduction band of the lowest unoccupied molecular orbital of MV(2+). The DFT calculation also reveals weak charge-transfer interactions between the lead-iodide nanowires and MV(2+). In addition, the electronic distributions of the valence and conduction bands indicate the 3-D transport of electrons and 1-D transport of holes, supporting the reported experimental result.[Abstract] [Full Text] [Related] [New Search]