These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The solvent-induced interaction of spherical solutes in associated and non-associated liquids. Author: Djikaev YS, Ruckenstein E. Journal: J Chem Phys; 2014 Jul 21; 141(3):034705. PubMed ID: 25053332. Abstract: We propose an efficient method for studying the solvent-induced interaction of two solvophobic particles immersed in a liquid solvent. The method is based on the combination of the probabilistic hydrogen bond model with the density functional theory. An analytic expression for the number of hydrogen bonds per water molecule near two spherical hydrophobes is derived as a function of the molecule distance to both hydrophobes, distance between hydrophobes, and their radii. Using this expression, one can construct an approximation for the distribution of fluid (liquid water) molecules in the system which provides a reasonably good (much faster and accurate enough) alternative to a standard iteration procedure. Such an approximate density distribution constitutes an efficient foundation for studying the length-scale and temperature dependence of hydrophobic interactions. The model is applied to the interaction of solvophobic solutes in both associated and non-associated liquids. Of these two cases, the model predictions for the solvent-induced potential of mean force between two solutes in associated liquids are closer to the results of molecular dynamics simulation of hydrophobic interactions in the SPC/E model water. Our results suggest that the hydrogen bonding ability of water molecules may play a major role in hydrophobic phenomena.[Abstract] [Full Text] [Related] [New Search]