These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular and ultrastructural characterization of Haplosporidium diporeiae n. sp., a parasite of Diporeia sp. (Amphipoda, Gammaridea) in the Laurentian Great Lakes (USA). Author: Winters AD, Faisal M. Journal: Parasit Vectors; 2014 Jul 24; 7():343. PubMed ID: 25060227. Abstract: BACKGROUND: The phylum Haplosporidia contains coelozoic and histozoic, spore-forming, obligate protozoan endoparasites that infect a number of freshwater and marine invertebrates including bivalves, crustaceans, and polychaetes. In amphipods, haplosporidians cause systemic infection resulting in a range of pathologies. While amphipods belonging to the genus Diporeia (Gammarideae) have been shown to host haplosporidians, the taxonomic relationship of the Diporeia haplosporidian(s) is largely unknown due to the lack of phylogenetic and detailed ultrastructural studies. METHODS: The infection characteristics and taxonomic identity of a haplosporidian infecting Diporeia spp. (Diporeia) were based on microscopical investigation, electron microscopy, and Bayesian phylogenetic inference using haplosporidian 16S rRNA gene sequences. RESULTS: In stained sections, the haplosporidian was observed to cause systemic infections in Diporeia that were often accompanied with host tissue degeneration. The haplosporidian appeared as binucleate plasmodia and sporocysts containing different spore maturation stages in the coelom, connective tissue, digestive tissue, and muscle. All of the observed systemic infections progressed to sporogenesis. Transmission electron microscopy revealed that fixed mature spores were slightly ellipsoidal and had a mean spore length X width of 5.34 ± 0.17 × 4.09 ± 0.15 μm. A hinged opercular lid with a length of 3.1 ± 0.17 μm was observed for a number of developing spores. The average thickness of the cell wall was 90.0 ± 8.33 nm. Thin filaments (70 nm) composed of spore wall material were observed projecting from an abopercular thickening of the spore wall. Phylogenetic analysis showed that the haplosporidian is novel bearing some similarities with the oyster pathogen Haplosporidium nelsoni, yet distinctly different. CONCLUSIONS: Based on its morphology, genetic sequence, and host, it became evident that the Diporeia haplosporidian is taxonomically novel and we propose its nomenclature as Haplosporidium diporeiae. This is the first report of a haplosporidian infecting Diporeia in Lake Superior.[Abstract] [Full Text] [Related] [New Search]