These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae. Author: Morrissey KL, He C, Wong MH, Zhao X, Chapman RZ, Bender SL, Prevatt WD, Stoykovich MP. Journal: Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233. Abstract: Microalgae-derived biofuels have potential advantages over other renewable, crop-based resources; however, large-scale production is not currently economical due, in part, to challenges in the harvesting step. In this article, we present a novel approach for the dewatering and harvesting of microalgae using flocculants that can be recovered and recycled. Polyampholytes with molecular charges dependent upon pH (ranging from net positively- to net negatively-charged) are used as a model flocculant system and provide reversible electrostatic interactions with the negatively-charged algal cells. These pH-dependent properties allow the polyampholytic flocculants to efficiently desorb from concentrated biomass and, unlike most commercial flocculants that have permanently charged functionalities, be recovered and recycled for further dewatering processes. The behavior of the model polyampholytic flocculants is characterized for the dewatering of Chlorella vulgaris (UTEX 395). The reversible and recyclable flocculants achieve >99% flocculation efficiencies, are recovered at more than 98 wt% yields after biomass dewatering, and can be recycled over five times for flocculation.[Abstract] [Full Text] [Related] [New Search]