These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecularly imprinted protein recognition thin films constructed by controlled/living radical polymerization. Author: Sasaki S, Ooya T, Kitayama Y, Takeuchi T. Journal: J Biosci Bioeng; 2015 Feb; 119(2):200-5. PubMed ID: 25060727. Abstract: We demonstrated the synthesis of molecularly imprinted polymers (MIPs) with binding affinity toward a target protein, ribonuclease A (RNase) by atom transfer radical polymerization (ATRP) of acrylic acid, acrylamide, and N,N'-methylenebisacrylamide in the presence of RNase. The binding activity of the MIPs was evaluated by surface plasmon resonance (SPR) of the MIP thin layers prepared on the gold-coated sensor chips. The MIPs prepared by ATRP (MIP-ATRP) had a binding affinity toward RNase with larger binding amount compared to MIPs prepared by conventional free radical polymerization methods (MIP-RP). Moreover, protein selectivity was evaluated using reference proteins (cytochrome c, myoglobin, and α-lactalbumin) and was confirmed in MIP-ATRP of optimum film thickness determined experimentally to be 15-30 nm; however, protein selectivity was not achieved in all MIP-RP. We have shown that ATRP is powerful technique for preparing protein recognition materials by molecular imprinting.[Abstract] [Full Text] [Related] [New Search]