These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Breath-by-breath pulmonary O2 uptake kinetics: effect of data processing on confidence in estimating model parameters.
    Author: Keir DA, Murias JM, Paterson DH, Kowalchuk JM.
    Journal: Exp Physiol; 2014 Nov; 99(11):1511-22. PubMed ID: 25063837.
    Abstract:
    To improve the signal-to-noise ratio of breath-by-breath pulmonary O2 uptake (V̇O2p) data, it is common practice to perform multiple step transitions, which are subsequently processed to yield an ensemble-averaged profile. The effect of different data-processing techniques on phase II V̇O2p kinetic parameter estimates (V̇O2p amplitude, time delay and phase II time constant (τV̇O2p)] and model confidence [95% confidence interval (CI95)] was examined. Young (n = 9) and older men (n = 9) performed four step transitions from a 20 W baseline to a work rate corresponding to 90% of their estimated lactate threshold on a cycle ergometer. Breath-by-breath V̇O2p was measured using mass spectrometry and volume turbine. Mono-exponential kinetic modelling of phase II V̇O2p data was performed on data processed using the following techniques: (A) raw data (trials time aligned, breaths of all trials combined and sorted in time); (B) raw data plus interpolation (trials time aligned, combined, sorted and linearly interpolated to second by second); (C) raw data plus interpolation plus 5 s bin averaged; (D) individual trial interpolation plus ensemble averaged [trials time aligned, linearly interpolated to second by second (technique 1; points joined by straight-line segments), ensemble averaged]; (E) 'D' plus 5 s bin averaged; (F) individual trial interpolation plus ensemble averaged [trials time aligned, linearly interpolated to second by second (technique 2; points copied until subsequent point appears), ensemble averaged]; and (G) 'F' plus 5 s bin averaged. All of the model parameters were unaffected by data-processing technique; however, the CI95 for τV̇O2p in condition 'D' (4 s) was lower (P < 0.05) than the CI95 reported for all other conditions (5-10 s). Data-processing technique had no effect on parameter estimates of the phase II V̇O2p response. However, the narrowest interval for CI95 occurred when individual trials were linearly interpolated and ensemble averaged.
    [Abstract] [Full Text] [Related] [New Search]