These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of CD163 mRNA and soluble CD163 protein in human adipose tissue in vitro.
    Author: Fjeldborg K, Møller HJ, Richelsen B, Pedersen SB.
    Journal: J Mol Endocrinol; 2014 Oct; 53(2):227-35. PubMed ID: 25074267.
    Abstract:
    CD163-positive macrophages are highly expressed in the human adipose tissue (AT) particularly from obese individuals. However, little is known about the regulation of CD163 mRNA and the protein level of sCD163 in human AT. We aimed to examine the regulation of CD163 and sCD163 in AT. Human s.c. AT samples (n=5) were stimulated with dexamethasone (DEX; 200  nmol/l), lipopolysaccharide (LPS; 100  ng/ml), or DEX+LPS for various time periods up to 24  h. Gene expressions of CD163, ADAM17, IL10, and TNFA (TNF) were measured by RT-PCR. Protein levels of sCD163, IL10, and TNFα (TNF) were measured by ELISA. Furthermore, AT was separated into stromal and adipocyte fraction. We found that CD163 mRNA was strongly expressed in the stromal vascular fraction but hardly detectable in the isolated adipocytes. Incubating whole AT with DEX significantly up-regulated CD163 (P<0.001), whereas incubation with LPS had no effects on CD163 (P>0.05). By contrast, the protein level of sCD163 was not affected by DEX (P>0.05), but LPS significantly increased the level of sCD163 and TNFα (P<0.05). This might be due to the concomitant LPS stimulation of ADAM17, which is known to mediate shedding of the extracellular domains of sCD163 and TNFα. Finally, DEX significantly reduced the LPS-induced TNFα release to the incubation medium but had no effects on sCD163. We conclude that the expression of CD163 and the release of sCD163 are differentially regulated in human AT. Moreover, similar to studies on differentiated blood monocytes, TNFα and sCD163 are concomitantly released in human AT by LPS, which also up-regulate ADAM17.
    [Abstract] [Full Text] [Related] [New Search]