These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mixed sulfur-iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent. Author: Wang S, Liang P, Wu Z, Su F, Yuan L, Sun Y, Wu Q, Huang X. Journal: Environ Sci Pollut Res Int; 2015 Jan; 22(1):415-24. PubMed ID: 25077656. Abstract: A mixed sulfur-iron particles packed reactor (SFe reactor) was developed to simultaneously remove total nitrogen (TN) and total phosphorus (TP) of the secondary effluent from municipal wastewater treatment plants. Low effluent TN (<1.5 mg/L) and TP (<0.3 mg/L) concentrations were simultaneously obtained, and high TN removal rate [1.03 g N/(L·d)] and TP removal rate [0.29 g P/(L·d)] were achieved at the hydraulic retention time (HRT) of 0.13 h. Kinetic models describing denitrification were experimentally obtained, which predicted a higher denitrification rate [1.98 g N/(L·d)] of SFe reactor than that [1.58 g N/(L·d)] of sulfur alone packed reactor due to the mutual enhancement between sulfur-based autotrophic denitrification and iron-based chemical denitrification. A high TP removal obtained in SFe reactor was attributed to chemical precipitation of iron particles. Microbial community analysis based on 16S rRNA revealed that autotrophic denitrifying bacteria Thiobacillus and Sulfuricella were the dominant genus, indicating that autotrophic denitrification played important role in nitrate removal. These results indicate that sulfur and iron particles can be packed together in a single reactor to effectively remove nitrate and phosphorus.[Abstract] [Full Text] [Related] [New Search]