These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physicochemical characterization of asulacrine towards the development of an anticancer liposomal formulation via active drug loading: stability, solubility, lipophilicity and ionization. Author: See E, Zhang W, Liu J, Svirskis D, Baguley BC, Shaw JP, Wang G, Wu Z. Journal: Int J Pharm; 2014 Oct 01; 473(1-2):528-35. PubMed ID: 25079434. Abstract: To facilitate the development of a liposomal formulation for cancer therapy, the physicochemical properties of asulacrine (ASL), an anticancer drug candidate, were characterized. Nano-liposomes were prepared by thin-film hydration in conjugation with active drug loading using ammonium sulphate and post-insertion with Poloxamer 188. A stability-indicating HPLC assay with diode array detection was developed for the determination of ASL concentrations. The U-shaped pH-solubility profile in aqueous solutions, with a lowest solubility at pH 7.4 (0.843 μg/mL), indicated that ASL is an ampholyte, and dilution or neutralization of acidic drug solutions used in clinical trials with physiological fluids may cause drug precipitation. The basic pKa value measured by absorbance spectroscopy was 6.72. The logD value at pH 3.8 was 1.15 which increased to 3.24 as pH increased to 7.4. ASL was found to be the most stable in acidic conditions and degraded most rapidly in alkaline conditions. An extra-liposomal pH of 5.6 during drug loading was found to be optimal to achieve the highest drug loading (DL) of 4.76% and entrapment efficiency (EE) of 99.9%. At this pH, >90% of ASL was ionized conferring high drug solubility (1mg/mL) and acted as a reservoir of unionized ASL to be transported into liposomal cores. As a suspension the optimized liposomes showed great physicochemical stability for five months at 4°C. In summary, the obtained physicochemical parameters provided insightful information useful to maximise DL into the liposomes, and explain a tendency of drug precipitation of pH-solubilized formulations following intravenous infusion.[Abstract] [Full Text] [Related] [New Search]