These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Altered platelet calsequestrin abundance, Na⁺/Ca²⁺ exchange and Ca²⁺ signaling responses with the progression of diabetes mellitus.
    Author: Zheng Y, Wang L, Zhu Z, Yan X, Zhang L, Xu P, Luo D.
    Journal: Thromb Res; 2014 Sep; 134(3):674-81. PubMed ID: 25084748.
    Abstract:
    INTRODUCTION: Downregulation of calsequestrin (CSQ), a major Ca(2+) storage protein, may contribute significantly to the hyperactivity of internal Ca(2+) ([Ca(2+)]i) in diabetic platelets. Here, we investigated changes in CSQ-1 abundance, Ca(2+) signaling and aggregation responses to stimulation with the progression of diabetes, especially the mechanism(s) underlying the exaggerated Ca(2+) influx in diabetic platelets. MATERIALS AND METHODS: Type 1 diabetes was induced by streptozotocin in rats. Platelet [Ca(2+)]i and aggregation responses upon ADP stimulation were assessed by fluorescence spectrophotometry and aggregometry, respectively. CSQ-1 expression was evaluated using western blotting. RESULTS: During the 12-week course of diabetes, the abundance of CSQ-1, basal [Ca(2+)]i and ADP-induced Ca(2+) release were progressively altered in diabetic platelets, while the elevated Ca(2+) influx and platelet aggregation were not correlated with diabetes development. 2-Aminoethoxydiphenyl borate, the store-operated Ca(2+) channel blocker, almost completely abolished ADP-induced Ca(2+) influx in normal and diabetic platelets, whereas nifedipine, an inhibitor of the nicotinic acid adenine dinucleotide phosphate receptor, showed no effect. Additionally, inhibition of Na(+)/Ca(2+) exchange induced much slower Ca(2+) extrusion and more Ca(2+) influx in normal platelets than in diabetic platelets. Furthermore, under the condition of Ca(2+)-ATPase inhibition, ionomycin caused greater Ca(2+) mobilization and Ca(2+) influx in diabetic platelets than in normal platelets. CONCLUSIONS: These data demonstrate that platelet hyperactivity in diabetes is caused by several integrated factors. Besides the downregulation of CSQ-1 that mainly disrupts basal Ca(2+) homeostasis, insufficient Na(+)/Ca(2+) exchange also contributes, at least in part, to the hyperactive Ca(2+) response to stimulation in diabetic platelets.
    [Abstract] [Full Text] [Related] [New Search]