These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Direct inhibition of hypothalamic proopiomelanocortin neurons by dynorphin A is mediated by the μ-opioid receptor. Author: Pennock RL, Hentges ST. Journal: J Physiol; 2014 Oct 01; 592(19):4247-56. PubMed ID: 25085890. Abstract: It has recently been shown that dynorphin A (Dyn A), an endogenous agonist of the κ-opioid receptor (KOR), directly inhibits proopiomelanocortin (POMC) neurons in the hypothalamus through activation of G-protein-coupled inwardly rectifying K(+) channels (GIRKs). This effect has been proposed to be mediated by the putative κ2-opioid receptor (KOR-2), and has been suggested as a possible mechanism for the orexigenic actions of KOR agonists. Using whole-cell voltage clamp recordings in brain slice preparations, the present study demonstrates that Dyn A (1 or 5 μm) induces an outward current in POMC neurons that is reversed by the highly selective μ-opioid receptor (MOR) antagonist CTAP and is absent in mice lacking MORs. Additionally, the KOR-2-selective agonist GR89696 binds MORs on POMC neurons but fails to induce an outward current. Similar to Dyn A, the KOR-selective antagonist nor-binaltorphimine (nor-BNI) lacked specificity when used at sufficiently high concentrations. Maximal concentrations of the MOR-selective agonist DAMGO induced outward currents in POMC neurons that were completely reversed by a relatively high concentration of nor-BNI. Experiments using a half-maximal concentration of DAMGO demonstrate that nor-BNI must be used at concentrations <100 nm to avoid non-specific actions of the antagonist at MORs located on POMC neurons. These data suggest that direct inhibition of POMC neurons by Dyn A is mediated through the MOR, not the KOR-2, which is consistent with previous studies demonstrating that Dyn A can act at the μ-opioid receptor (MOR) when present in high concentrations.[Abstract] [Full Text] [Related] [New Search]