These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic analysis of the interaction of alkyl glycosides with two human beta-glucosidases. Author: Gopalan V, Daniels LB, Glew RH, Claeyssens M. Journal: Biochem J; 1989 Sep 01; 262(2):541-8. PubMed ID: 2508630. Abstract: This paper addresses the similarities and differences in the topology of the catalytic centres of human liver cytosolic beta-glucosidase and placental lysosomal glucocerebrosidase, and utilizes well-documented reversible active-site-directed inhibitors. This comparative kinetic study was performed mainly to decipher the chemical and structural nature of the active site of the cytosolic beta-glucosidase, whose physiological function is unknown. Specifically, analysis of the effects of a family of alkyl beta-glucosides consistently displayed 100-250-fold lower inhibition constants with the cytosolic broad-specificity beta-glucosidase compared with the placental glucocerebrosidase; for example, with octyl beta-D-glucoside the Ki values were 10 microM and 1490 microM for the cytosolic and lysosomal beta-glucosidases respectively. Furthermore the higher affinity of the cytosolic beta-glucosidase than glucocerebrosidase for the amphipathic alkyl beta-D-glucosides was validated by the greater increase in the free energy of binding with increasing alkyl chain length [delta delta G0 (K,)/CH2: lysosomal enzyme, 2.01 kJ/mol (480 cal/mol); cytosolic enzyme, 3.05 kJ/mol (730 cal/mol)]. The implications of the presence of highly non-polar domains in the active site of the cytosolic beta-glucosidase are discussed with regard to its potential physiological substrates.[Abstract] [Full Text] [Related] [New Search]