These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of species composition and fumonisin production in Aspergillus section Nigri populations in maize kernels from USA and Italy.
    Author: Susca A, Moretti A, Stea G, Villani A, Haidukowski M, Logrieco A, Munkvold G.
    Journal: Int J Food Microbiol; 2014 Oct 01; 188():75-82. PubMed ID: 25087207.
    Abstract:
    Fumonisin contamination of maize is considered a serious problem in most maize-growing regions of the world, due to the widespread occurrence of these mycotoxins and their association with toxicosis in livestock and humans. Fumonisins are produced primarily by species of Fusarium that are common in maize grain, but also by some species of Aspergillus sect. Nigri, which can also occur on maize kernels as opportunistic pathogens. Understanding the origin of fumonisin contamination in maize is a key component in developing effective management strategies. Although some fungi in Aspergillus sect. Nigri are known to produce fumonisins, little is known about the species which are common in maize and whether they make a measurable contribution to fumonisin contamination of maize grain. In this work, we evaluated populations of Aspergillus sect. Nigri isolated from maize in USA and Italy, focusing on analysis of housekeeping genes, the fum8 gene and in vitro capability of producing fumonisins. DNA sequencing was used to identify Aspergillus strains belonging to sect. Nigri, in order to compare species composition between the two populations, which might influence specific mycotoxicological risks. Combined beta-tubulin/calmodulin sequences were used to genetically characterize 300 strains (199 from Italy and 101 from USA) which grouped into 4 clades: Aspergillus welwitschiae (syn. Aspergillus awamori, 14.7%), Aspergillus tubingensis (37.0%) and Aspergillus niger group 1 (6.7%) and group 2 (41.3%). Only one strain was identified as Aspergillus carbonarius. Species composition differed between the two populations; A. niger predominated among the USA isolates (69%), but comprised a smaller percentage (38%) of Italian isolates. Conversely, A. tubingensis and A. welwitschiae occurred at higher frequencies in the Italian population (42% and 20%, respectively) than in the USA population (27% and 5%). The evaluation of FB2 production on CY20S agar revealed 118 FB2 producing and 84 non-producing strains distributed among the clades: A. welwitschiae, A. niger group 1 and A. niger group 2, confirming the potential of Aspergillus sect. Nigri species to contribute to total fumonisin contamination of maize. A higher percentage of A. niger isolates (72.0%) produced FB2 compared to A. welwitschiae (36.6%). The percentage of FB2-producing A. niger strains was similar in the USA and Italian populations; however, the predominance of A. niger in the USA population suggests a higher potential for fumonisin production. Some strains with fum8 present in the genome did not produce FB2in vitro, confirming the ineffectiveness of fum8 presence as a predictor of FB2 production.
    [Abstract] [Full Text] [Related] [New Search]