These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of dietary vitamin E on the biosynthesis of 5-lipoxygenase products by rat polymorphonuclear leukocytes (PMNL). Author: Chan AC, Tran K, Pyke DD, Powell WS. Journal: Biochim Biophys Acta; 1989 Oct 17; 1005(3):265-9. PubMed ID: 2508746. Abstract: Activation of polymorphonuclear neutrophils (PMNL) leads to the release of arachidonate from cellular phospholipids via a phospholipase A2, and conversion of products of the 5-lipoxygenase pathway. Evidence to date indicates the dietary vitamin E ((R,R,R)-alpha-tocopherol) can influence both cyclooxygenase and phospholipase A2 activities and that the effect of this vitamin is cell/tissue specific. The present study was undertaken in order to examine the effects of varying dietary tocopherol on PMNL tocopherol content and 5-lipoxygenase product profile using the ionophore A23187 as stimulant in the presence and absence of exogenous arachidonate. Feeding semi-purified diets containing 0, 30 or 3000 ppm of (R,R,R)-alpha-tocopherol acetate to weanling rats for 17 weeks resulted in a dose-related enrichment of PMNL tocopherol. Stimulation of PMNL elicited a significant and rapid loss of tocopherol. When PMNL were stimulated with A23187 alone, the synthesis of 5-HETE, LTB4 and 19-hydroxy-LTB4 was decreased in proportion to increasing dietary tocopherol concentrations. However, when exogenous arachidonate was provided with A23187, intermediate amounts of dietary tocopherol (30 ppm) still suppressed the formation of 5-lipoxygenase products, but high doses (3000 ppm) did not have any additional inhibitory effect. This differential response to high concentrations of vitamin E in the presence and absence of exogenous arachidonate highly suggest that at these concentrations, tocopherol may act principally at the level of substrate release whereas at lower concentrations, 5-lipoxygenase is inhibited. Data from this study demonstrated that attenuation of the formation of 5-lipoxygenase products in PMNL can be achieved by dietary vitamin E enrichment.[Abstract] [Full Text] [Related] [New Search]