These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Supplementation of zinc on oocyte in vitro maturation improves preimplatation embryonic development in pigs.
    Author: Jeon Y, Yoon JD, Cai L, Hwang SU, Kim E, Zheng Z, Lee E, Kim DY, Hyun SH.
    Journal: Theriogenology; 2014 Oct 01; 82(6):866-74. PubMed ID: 25091527.
    Abstract:
    We investigated the effects of zinc supplementation during the IVM of porcine oocytes. Nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, subsequent embryonic development, and gene expression were evaluated. Zinc concentrations in porcine plasma and follicular fluid were 0.82 and 0.84 μg/mL, respectively. Zinc was not detected in IVM medium. After treatment with various zinc concentrations (0.0, 0.4, 0.8, 1.2, and 1.6 μg/mL), no significant difference in IVM was observed among groups (85.7%, 88.7%, 90.4%, 90.3%, and 87.2%, respectively). The effects of different zinc concentrations on porcine oocyte intracellular GSH and ROS levels were examined in mature oocytes. Intracellular GSH levels were significantly higher in the 0.8-, 1.2-, and 1.6-μg/mL groups than in the control (P < 0.05). Intracellular ROS levels of oocytes matured with 0.8, 1.2, and 1.6 μg/mL were reduced significantly (P < 0.05) compared with the control and 0.4-μg/mL groups. The developmental competence of oocytes matured with different zinc concentrations was evaluated after parthenogenetic activation (PA) and in vitro fertilization (IVF). Oocytes treated with zinc during IVM showed no significant difference in cleavage rate after PA. Oocytes treated with 0.8 and 1.2 μg/mL zinc during IVM had significantly higher blastocyst formation rates after PA (41.5% and 41.1%, respectively) than the control (27.2%). IVF embryos showed similar results. The blastocyst formation rate was significantly higher (28.2%) in the 0.8-μg/mL group. TNFAIP2 and Bax were decreased in zinc-treated cumulus cells. Increased POU5F1 and decreased Bax transcript levels were observed in zinc-treated oocytes. POU5F1 and Bcl-2 transcript levels were significantly higher in zinc-treated IVF blastocysts. These results indicate that treatment with adequate zinc concentrations during IVM improved the developmental potential of porcine embryos by regulating the intracellular GSH concentration, the ROS level, and transcription factor expression.
    [Abstract] [Full Text] [Related] [New Search]