These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Biochemical signaling of PD-1 on T cells and its functional implications.
    Author: Boussiotis VA, Chatterjee P, Li L.
    Journal: Cancer J; 2014; 20(4):265-71. PubMed ID: 25098287.
    Abstract:
    Maintenance of peripheral tolerance is essential for homeostasis of the immune system. While central tolerance mechanisms result in deletion of the majority of self-reactive T cells, T lymphocytes specific for self-antigens also escape this process and circulate in the periphery. To control the development of autoimmunity, multiple mechanisms of peripheral tolerance have evolved, including T cell anergy, deletion, and suppression by regulatory T (Treg) cells. The pathway consisting of the programmed cell death 1 (PD-1) receptor (CD279) and its ligands PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC; CD273) plays a vital role in the induction and maintenance of peripheral tolerance. This pathway also regulates the balance between stimulatory and inhibitory signals needed for effective immunity and maintenance of T cell homeostasis. In contrast to this important beneficial role in maintaining T cell homeostasis, PD-1 mediates potent inhibitory signals that prevent the expansion and function of T effector cells and have detrimental effects on antiviral and antitumor immunity. Despite the compelling studies on the significant functional role of PD-1 in mediating inhibition of activated T cells, little is known about how PD-1 blocks T cell activation. Here, we will provide a brief overview of the signaling events that are regulated by PD-1 triggering, and we will discuss their implications on cell intrinsic and extrinsic mechanisms that determine the fate and function of T effector cells.
    [Abstract] [Full Text] [Related] [New Search]