These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Numerical simulation of red blood cell behavior in a stenosed arteriole using the immersed boundary-lattice Boltzmann method.
    Author: Vahidkhah K, Fatouraee N.
    Journal: Int J Numer Method Biomed Eng; 2012 Feb; 28(2):239-56. PubMed ID: 25099328.
    Abstract:
    Because of their deformability and tendency to form aggregates, red blood cells (RBCs) immensely affect the hydrodynamic properties of blood flow in microcirculation. In this paper, RBCs' two-dimensional deformation and motion in Poiseuille flow and in a stenosed arteriole is numerically investigated by the immersed boundary-lattice Boltzmann method. The RBCs are modeled as suspended capsules of fluid in plasma flow. A neo-Hookean elastic model with bending resistance is utilized for the RBC membrane. Also, the suspending plasma is modeled as an incompressible Newtonian fluid. To take the effects of aggregation and dissociation of RBCs into account, intercellular interaction is modeled by the Morse potential. The effects of essential parameters namely, mechanical resistance of the RBC membrane, plasma viscous forces, and cell membrane adhesion strength on RBC behavior are presented. Motions and deformations of RBCs in a stenosis and the effects of the stenosed zone on the behavior of cell aggregates were also simulated and analyzed in this study.
    [Abstract] [Full Text] [Related] [New Search]