These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew. Author: Gao F, Dai R, Pike SM, Qiu W, Gassmann W. Journal: Plant Mol Biol; 2014 Nov; 86(4-5):381-93. PubMed ID: 25107649. Abstract: The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses. We have examined the functions of defense genes associated with the salicylic acid (SA) pathway, including ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), EDS1-LIKE 2 (EDL2), EDL5 and PHYTOALEXIN DEFICIENT 4 (PAD4) of two grapevine species, Vitis vinifera cv. Cabernet Sauvignon, which is susceptible to E. necator, and V. aestivalis cv. Norton, which is resistant. Both VaEDS1 and VvEDS1 were previously found to functionally complement the Arabidopsis eds1-1 mutant. Here we show that the promoters of both VaEDS1 and VvEDS1 were induced by SA, indicating that the heightened defense of Norton is related to its high SA level. Other than Va/VvEDS1, only VaEDL2 complemented Arabidopsis eds1-1, whereas Va/VvPAD4 did not complement Arabidopsis pad4-1. Bimolecular fluorescence complementation results indicated that Vitis EDS1 and EDL2 proteins interact with Vitis PAD4 and AtPAD4, suggesting that Vitis EDS1/EDL2 forms a complex with PAD4 to confer resistance, as is known from Arabidopsis. However, Vitis EDL5 and PAD4 did not interact with Arabidopsis EDS1 or PAD4, correlating with their inability to function in Arabidopsis. Together, our study suggests a more complicated EDS1/PAD4 module in grapevine and provides insight into molecular mechanisms that determine disease resistance levels in Vitis species native to the North American continent.[Abstract] [Full Text] [Related] [New Search]