These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of ultrasonic treatment on dewaterability of sludge during Fenton oxidation.
    Author: Jiang J, Gong C, Tian S, Yang S, Zhang Y.
    Journal: Environ Monit Assess; 2014 Dec; 186(12):8081-8. PubMed ID: 25108663.
    Abstract:
    Fenton oxidation was compared with Fenton oxidation coupled with ultrasonication (Fenton + US) for sludge dewatering. Different Fenton reagent (H2O2, Fe(2+)) concentrations, pH, and reaction times were studied in different systems on the basis of the specific resistance to filtration (SRF) and capillary suction time (CST). It was found that Fenton + US can significantly reduce Fe(2+) and H2O2 dosages and reaction times. After ultrasonication of the system at pH 3, with an ultrasonic frequency of 25 kHz and a sound energy density of 100 W/L, the Fe(2+), H2O2 dosage, and reaction time were reduced by 66.7, 75.0, and 75.0 %, respectively, when compared with Fenton oxidation at the same dewaterability of sludge. The microstructure of sludge and hydroxyl radical (·OH) density in Fenton oxidation and Fenton + US was further examined. Fenton + US produced more · OH in a sludge system than did individual Fenton oxidation. The concentration of · OH in Fenton + US fell from 79.2 to 6 mg/L over 3.5 h, while the concentration of · OH in Fenton oxidation fell from 59.6 to 1 mg/L over 2 h, thus destroying the microstructure of sludge more effectively. Sludge treated using Fenton + US for 30 min showed a much thinner and looser microstructure.
    [Abstract] [Full Text] [Related] [New Search]