These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ferro- to antiferromagnetic crossover angle in diphenoxido- and carboxylato-bridged trinuclear Ni(II)₂-Mn(II) complexes: experimental observations and theoretical rationalization. Author: Seth P, Figuerola A, Jover J, Ruiz E, Ghosh A. Journal: Inorg Chem; 2014 Sep 02; 53(17):9296-305. PubMed ID: 25111338. Abstract: Three new trinuclear heterometallic Ni(II)-Mn(II) complexes have been synthesized using a [NiL] metalloligand, where H2L = N,N'-bis(salicylidene)-1,3-propanediamine. The complexes [(NiL)2Mn(OCnn)2(CH3OH)2]·CH3OH (1), [(NiL)2Mn(OPh)2(CH3OH)2][(NiL)2Mn(OPh)2]·H2O (2), and [(NiL)2Mn(OSal)2(CH3OH)2]·2[NiL] (3) (where OCnn = cinnamate, OPh = phenylacetate, OSal = salicylate) have been structurally characterized. In all three complexes, in addition to the double phenoxido bridge, the two terminal Ni(II) atoms are linked to the central Mn(II) by means of a syn-syn bridging carboxylate, giving rise to a linear structure. Complexes 1 and 2 with Ni-O-Mn angles of 97.24 and 96.43°, respectively, exhibit ferromagnetic interactions (J(Ni-Mn) = +1.38 and +0.50 cm(-1), respectively), whereas 3 is antiferromagnetic (J(Ni-Mn) = -0.24 cm(-1)), having an Ni-O-Mn angle of 98.51°. DFT calculations indicate that there is a clear magneto-structural correlation between the Ni-O-Mn angle and J(Ni-Mn) values, which is in agreement with the experimental results.[Abstract] [Full Text] [Related] [New Search]