These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Timing the ischaemic stroke by 1H-MRI: improved accuracy using absolute relaxation times over signal intensities. Author: Rogers HJ, McGarry BL, Knight MJ, Jokivarsi KT, Gröhn OH, Kauppinen RA. Journal: Neuroreport; 2014 Oct 22; 25(15):1180-5. PubMed ID: 25116145. Abstract: One in four ischaemic stroke patients are ineligible for thrombolytic treatment due to unknown onset time. Quantification of absolute MR relaxation times and signal intensities are potential methods for estimating stroke duration. We compared the accuracy of these approaches and determined whether changes in relaxation times and signal intensities identify the same ischaemic tissue as diffusion MRI. Seven Wistar rats underwent permanent middle cerebral artery occlusion to induce focal ischaemia and were scanned at six time points. The trace of the diffusion tensor (DAV), T1ρ and T2 were acquired at 4.7 T. Results show relaxation times, and signal intensities of the MR relaxation parameters increase linearly with ischaemia duration (P<0.001). Using T1ρ and T2 relaxation times, an estimate of 4.5 h after occlusion has an uncertainty of ± 12 and ± 35 min, respectively, compared with over 50 min for signal intensities. In addition, we present a pixel-by-pixel method that simultaneously estimates stroke onset time and identifies potentially irreversible ischaemic tissue using absolute relaxation times. This method demonstrates signal intensity changes during ischaemia display an ambiguous pattern and highlights the possibility that diffusion MRI overestimates the true extent of irreversible ischaemia. In conclusion, quantification of absolute relaxation times at a single time point enables a more accurate estimation of stroke duration than signal intensities and provides more information about tissue status in ischaemia.[Abstract] [Full Text] [Related] [New Search]