These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet. Author: Pérez-Schindler J, Svensson K, Vargas-Fernández E, Santos G, Wahli W, Handschin C. Journal: Diabetologia; 2014 Nov; 57(11):2405-12. PubMed ID: 25116175. Abstract: AIMS/HYPOTHESIS: Physical activity improves oxidative capacity and exerts therapeutic beneficial effects, particularly in the context of metabolic diseases. The peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α) and the nuclear receptor PPARβ/δ have both been independently discovered to play a pivotal role in the regulation of oxidative metabolism in skeletal muscle, though their interdependence remains unclear. Hence, our aim was to determine the functional interaction between these two factors in mouse skeletal muscle in vivo. METHODS: Adult male control mice, PGC-1α muscle-specific transgenic (mTg) mice, PPARβ/δ muscle-specific knockout (mKO) mice and the combination PPARβ/δ mKO + PGC-1α mTg mice were studied under basal conditions and following PPARβ/δ agonist administration and acute exercise. Whole-body metabolism was assessed by indirect calorimetry and blood analysis, while magnetic resonance was used to measure body composition. Quantitative PCR and western blot were used to determine gene expression and intracellular signalling. The proportion of oxidative muscle fibre was determined by NADH staining. RESULTS: Agonist-induced PPARβ/δ activation was only disrupted by PPARβ/δ knockout. We also found that the disruption of the PGC-1α-PPARβ/δ axis did not affect whole-body metabolism under basal conditions. As expected, PGC-1α mTg mice exhibited higher exercise performance, peak oxygen consumption and lower blood lactate levels following exercise, though PPARβ/δ mKO + PGC-1α mTg mice showed a similar phenotype. Similarly, we found that PPARβ/δ was dispensable for PGC-1α-mediated enhancement of an oxidative phenotype in skeletal muscle. CONCLUSIONS/INTERPRETATION: Collectively, these results indicate that PPARβ/δ is not an essential partner of PGC-1α in the control of skeletal muscle energy metabolism.[Abstract] [Full Text] [Related] [New Search]