These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Quantification of the triglyceride fatty acid composition with 3.0 T MRI.
    Author: Leporq B, Lambert SA, Ronot M, Vilgrain V, Van Beers BE.
    Journal: NMR Biomed; 2014 Oct; 27(10):1211-21. PubMed ID: 25125224.
    Abstract:
    The aim of this work was to validate a sequential method for quantifying the triglyceride fatty acid composition with 3.0 T MRI. The image acquisition was performed with a 3D spoiled gradient multiple echo sequence. A specific phase correction algorithm was implemented to correct the native phase images for wrap, zero- and first-order phase and rebuild the real part images. Then, using a model of a fat (1)H MR spectrum integrating nine components, the number of double bonds (ndb) and the number of methylene-interrupted double bonds (nmidb) were derived. The chain length (CL) was obtained from these parameters using heuristic approximation. Validations were performed on different vegetable oils whose theoretical fatty acid composition was used as reference and in five human subjects. In vivo measurements were made in the liver and in the subcutaneous and visceral adipose tissues. Linear regressions showed strong correlations between ndb and nmidb quantified with MRI and the theoretical values calculated using oil composition. Mean ndb/nmidb/CL were 1.80 ± 0.25/0.51 ± 0.21/17.43 ± 0.07, 2.72 ± 0.31/0.94 ± 0.16/17.47 ± 0.08 and 2.53 ± 0.21/0.84 ± 0.14/17.43 ± 0.07 in the liver, subcutaneous and visceral adipose tissues respectively. The results suggest that the triglyceride fatty acid composition can be assessed in human fatty liver and adipose tissues with a clinically relevant MRI method at 3.0 T.
    [Abstract] [Full Text] [Related] [New Search]