These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Immobilization of a lactase onto a magnetic support by covalent attachment to polyethyleneimine-glutaraldehyde-activated magnetite. Author: Dekker RF. Journal: Appl Biochem Biotechnol; 1989 Dec; 22(3):289-310. PubMed ID: 2512853. Abstract: A magnetic immobilized lactase has been prepared using magnetite as the magnetic material. Magnetite was functionalized by treatment with polyethyleneimine and crosslinked with glutaraldehyde. Lactase was then covalently coupled to the activated magnetic matrix via the aldehyde groups. The conditions for optimal immobilization of enzyme are described. Eighty percent of the lactase activity was lost on immobilization and is thought to be owing to the orientation of enzyme binding to the matrix. The amount of protein coupled was 80% of that applied. The maximum lactase activity retained on the matrix following immobilization was 360 U/g matrix. The immobilized lactase showed optimal activity at pH 4.5 and 65 degrees C. The immobilized lactase was more heat stable than the free enzyme, and retained 83% of its original activity after 14 d at 55 degrees C. Galactose competitively inhibited the immobilized lactase preparation (Ki 20 m/M). The presence of high initial concentrations of galactose (10% w/v) did not prevent total hydrolysis of lactose. Glucose and calcium ions were activators of the immobilized enzyme. The immobilized enzyme hydrolyzed high concentrations of lactose (up to 25% w/v) to completion within 4-6 h in a stirred batch reactor at 55 degrees C. There was no evidence of substrate inhibition at high substrate concentrations. The efficiency of hydrolysis of lactose by the immobilized lactase was better than that of the free enzyme. The magnetic immobilized lactase was demonstrated to be suitable for use in the enzymatic hydrolysis of both pure, and cheese whey permeate, lactose.[Abstract] [Full Text] [Related] [New Search]