These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cerebral vasoreactivity to carbon dioxide during cardiopulmonary perfusion at normothermia and hypothermia.
    Author: Johnsson P, Messeter K, Ryding E, Kugelberg J, Ståhl E.
    Journal: Ann Thorac Surg; 1989 Dec; 48(6):769-75. PubMed ID: 2512867.
    Abstract:
    With the pH-stat acid-base regulation strategy during hypothermic cardiopulmonary bypass (CPB), carbon dioxide (CO2) is generally administered to maintain the partial pressure of arterial CO2 at a higher level than with the alpha-stat method. With preserved CO2 vasoreactivity during CPB, this induction of "respiratory acidosis" can lead to a much higher cerebral blood flow level than is motivated metabolically. To evaluate CO2 vasoreactivity, cerebral blood flow was measured using a xenon 133 washout technique before, during, and after CPB at different CO2 levels in patients who were undergoing coronary artery bypass grafting with perfusion at either hypothermia or normothermia. The overall CO2 reactivity was 1.2 mL/100 g/min/mm Hg. There was no difference between the groups. The CO2 reactivity was not affected by temperature or CPB. The induced hemodilution resulted in higher cerebral blood flow levels during CPB, although this was counteracted by the temperature-dependent decrease in the hypothermia group. After CPB, a transient increase in cerebral blood flow was noted in the hypothermia group, the reason for which remains unclear. The study shows that manipulation of the CO2 level at different temperatures results in similar changes in cerebral blood flow irrespective of the estimated metabolic demand. This finding further elucidates the question of whether alpha-stat or pH-stat is the most physiological way to regulate the acid-base balance during hypothermic CPB.
    [Abstract] [Full Text] [Related] [New Search]