These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Phospholipid remodeling in human neutrophils. Parallel activation of a deacylation/reacylation cycle and platelet-activating factor synthesis.
    Author: Reinhold SL, Zimmerman GA, Prescott SM, McIntyre TM.
    Journal: J Biol Chem; 1989 Dec 25; 264(36):21652-9. PubMed ID: 2513324.
    Abstract:
    A23187 stimulated two enzymatic activities of human neutrophils (polymorphonuclear leukocytes), phospholipase A2 and fatty acyl-CoA acyltransferase, which resulted in a stimulated deacylation/reacylation cycle. The incorporation of fatty acids, other than arachidonic or eicosapentaenoic acid, into diacyl and alkylacyl species of choline phosphoglycerides was stimulated by 10-fold by A23187. These fatty acids were exclusively incorporated into the sn-2 position, and [3H]glycerol labeling showed there was no stimulation of de novo synthesis. A23187 also stimulated fatty acid incorporation into other phospholipids, but de novo synthesis accounted for a portion of this uptake. Inhibitors of protein kinase C prevented the stimulated recycling of phosphatidylcholine, and the simultaneous induction of platelet-activating factor synthesis, by inhibiting phospholipase A2 activation. They inhibited [3H]arachidonate release from prelabeled polymorphonuclear leukocytes, but had no effect on in vitro fatty acyl-CoA acyltransferase or acetyl-CoA acetyltransferase activity. Extracts from A23187-treated cells contained a fatty acyl-CoA acyltransferase, which did not utilize arachidonoyl-CoA, that was 2.3-fold more active than that of control extracts. Phosphatase treatment decreased this stimulated activity by 66%. Thus, A23187 stimulated a phospholipase A2 activity that generated both 1-alkyl and 1-acyl lysophosphatidylcholines. A stimulated acetyltransferase used a portion of the alkyl species for platelet-activating factor synthesis, while the acyl species and residual alkyl species were rapidly reacylated to phosphatidylcholine by a stimulated acyl-transferase. Arachidonate, an eicosanoid precursor, was spared by this process.
    [Abstract] [Full Text] [Related] [New Search]