These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Candida haemulonii complex: species identification and antifungal susceptibility profiles of clinical isolates from Brazil.
    Author: Ramos LS, Figueiredo-Carvalho MH, Barbedo LS, Ziccardi M, Chaves AL, Zancopé-Oliveira RM, Pinto MR, Sgarbi DB, Dornelas-Ribeiro M, Branquinha MH, Santos AL.
    Journal: J Antimicrob Chemother; 2015 Jan; 70(1):111-5. PubMed ID: 25134720.
    Abstract:
    OBJECTIVES: The emerging fungal pathogens comprising the Candida haemulonii complex (Candida haemulonii, Candida haemulonii var. vulnera and Candida duobushaemulonii) are notable for their antifungal resistance. Twelve isolates with phenotypic similarity to C. haemulonii were recovered from patients in Brazilian hospitals. Here we aimed to identify these isolates by a molecular approach, using the current classification of this fungal complex, and to evaluate their antifungal susceptibility profiles. METHODS: The fungal isolates were rechecked to certify their authentication by mycology methodologies and then characterized by ITS1-5.8S-ITS2 gene sequencing. A susceptibility assay was performed using the broth microdilution method published by CLSI (M27-A3/M27-S3). RESULTS: Based on biochemical tests, all Brazilian isolates were identified as C. haemulonii. After employing ITS sequencing, five isolates were identified as C. haemulonii, four as C. duobushaemulonii and three as C. haemulonii var. vulnera. All 12 clinical isolates were resistant to amphotericin B (MICs ranged from 2 to >16 mg/L) and fluconazole (MICs ≥ 64 mg/L). One isolate of C. haemulonii var. vulnera and two isolates of C. duobushaemulonii were susceptible-dose dependent to itraconazole, while the remaining isolates (75%) were resistant to this antifungal. Eight out of 12 isolates (66.7%) were resistant to voriconazole (MICs ≥ 16 mg/L), while all isolates were susceptible to caspofungin (MICs ≤ 0.5 mg/L). CONCLUSIONS: Our results reinforce the importance of molecular identification in differentiating species of the C. haemulonii complex. Moreover, the antifungal multiresistant profile of clinical isolates of the C. haemulonii complex represents a challenge to the treatment of such infections.
    [Abstract] [Full Text] [Related] [New Search]