These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differentiation of DctA and DcuS function in the DctA/DcuS sensor complex of Escherichia coli: function of DctA as an activity switch and of DcuS as the C4-dicarboxylate sensor.
    Author: Steinmetz PA, Wörner S, Unden G.
    Journal: Mol Microbiol; 2014 Oct; 94(1):218-29. PubMed ID: 25135747.
    Abstract:
    The C4-dicarboxylate responsiveness of the sensor kinase DcuS is only provided in concert with C4-dicarboxylate transporters DctA or DcuB. The individual roles of DctA and DcuS for the function of the DctA/DcuS sensor complex were analysed. (i) Variant DctA(S380D) in the C4-dicarboxylate site of DctA conferred C4-dicarboxylate sensitivity to DcuS in the DctA/DcuS complex, but was deficient for transport and for growth on C4-dicarboxylates. Consequently transport activity of DctA is not required for its function in the sensor complex. (ii) Effectors like fumarate induced expression of DctA/DcuS-dependent reporter genes (dcuB-lacZ) and served as substrates of DctA, whereas citrate served only as an inducer of dcuB-lacZ without affecting DctA function. (iii) Induction of dcuB-lacZ by fumarate required 33-fold higher concentrations than for transport by DctA (Km  = 30 μM), demonstrating the existence of different fumarate sites for both processes. (iv) In titration experiments with increasing dctA expression levels, the effect of DctA on the C4-dicarboxylate sensitivity of DcuS was concentration dependent. The data uniformly show that C4-dicarboxylate sensing by DctA/DcuS resides in DcuS, and that DctA serves as an activity switch. Shifting of DcuS from the constitutive ON to the C4-dicarboxylate responsive state, required presence of DctA but not transport by DctA.
    [Abstract] [Full Text] [Related] [New Search]