These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of phospholipids on the thermal stability of microsomal UDP-glucuronosyltransferase. Author: Rotenberg M, Zakim D. Journal: Biochemistry; 1989 Oct 17; 28(21):8577-82. PubMed ID: 2513879. Abstract: The GT2P isoform of microsomal UDP-glucuronosyltransferase from pig liver is a lipid-dependent enzyme. The data in the present work indicate that, in addition to regulation of activity, the thermal stability of the enzyme also is modulated by the acyl chain composition of phosphatidylcholines (PC) used to reconstitute the activity of pure enzyme. There was a reversible, temperature-dependent change in the state of the pure enzyme to an inactive form with onset at T greater than 38 degrees C, depending on the environment of the enzyme. The midpoint for the transition shifted from 39.8 degrees C for enzyme in a bilayer of distearoylphosphatidylcholine (DSPC) to 47.5 degrees C for enzyme in a bilayer of 1-stearoyl-2-oleoylphosphatidylcholine (SOPC). For all lipids, the transition from a catalytically active to an inactive form of the enzyme was associated with large compensating changes in H and S. Lipid-induced stabilization of the active form of UDP-glucuronosyltransferase at T greater than 37 degrees C was associated with decreases in delta H and delta S, but the decreases in delta S were larger, indicating that lipid-induced stabilization of the active form of the enzyme was entropic. The transition between the active and inactive forms of the enzyme was too rapid in either direction to measure in a standard spectrophotometer. In addition to reversible inactivation of the enzyme, there was a slower irreversible, temperature-dependent inactivation. The rate of this process depended on the acyl chains of the phosphocholines interacting with the enzyme. However, there was no obvious correlation between the structures of lipids that stabilized the different inactivation reactions.[Abstract] [Full Text] [Related] [New Search]