These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of metformin treatment in vivo on acute and long-term energy metabolism and progesterone production in vitro by granulosa cells from women with polycystic ovary syndrome. Author: Maruthini D, Harris SE, Barth JH, Balen AH, Campbell BK, Picton HM. Journal: Hum Reprod; 2014 Oct 10; 29(10):2302-16. PubMed ID: 25139174. Abstract: STUDY QUESTION: What are the consequences of polycystic ovary syndrome (PCOS) pathology and metformin-pretreatment in vivo in women with PCOS on the metabolism and steroid production of follicular phenotype- and long-term cultured-granulosa cells (GC)? SUMMARY ANSWER: PCOS pathology significantly compromised glucose metabolism and the progesterone synthetic capacity of follicular- and long-term cultured-GCs and the metabolic impact of PCOS on GC function was alleviated by metformin-pretreatment in vivo. WHAT IS KNOWN ALREADY: Granulosa cells from women with PCOS have been shown to have an impaired insulin-stimulated glucose uptake and lactate production in vitro. However, these results were obtained by placing GCs in unphysiological conditions in culture medium containing high glucose and insulin concentrations. Moreover, existing data on insulin-responsive steroid production in vitro by PCOS GCs vary. STUDY DESIGN, SIZE AND DURATION: Case-control experimental research comparing glucose uptake, pyruvate and lactate production and progesterone production in vitro by GCs from three aetiological groups, all undergoing IVF; healthy control women (Control, n = 12), women with PCOS treated with metformin in vivo (Metformin, n = 8) and women with PCOS not exposed to metformin (PCOS, n = 8). The study was conducted over a period of 3 years between 2007 and 2010. PARTICIPANTS/MATERIALS, SETTING, METHODS: Rotterdam criteria were used for the diagnosis of PCOS; all subjects were matched for age, BMI and baseline FSH. Individual patient cultures were undertaken with cells incubated in a validated, physiological, serum-free culture medium containing doses of 0-6 mM glucose and 0-100 ng/ml insulin for 6 h and 144 h to quantify the impact of treatments on acute and long-term metabolism, respectively, and progesterone production. The metabolite content of spent media was measured using spectrophotometric plate reader assay. The progesterone content of spent media was measured by enzyme-linked immunosorbent assay. Viable GC number was quantified after 144 h of culture by the vital dye Neutral Red uptake assay. MAIN RESULTS AND THE ROLE OF CHANCE: Granulosa cells from women with PCOS pathology revealed reduced pyruvate production and preferential lactate production in addition to their reduced glucose uptake during cultures (P < 0.05). Metformin pretreatment alleviated this metabolic lesion (P < 0.05) and enhanced cell proliferation in vitro (P < 0.05), but cells retained a significantly reduced capacity for progesterone synthesis compared with controls (P < 0.05). LIMITATIONS, REASONS FOR CAUTION: Although significant treatment effects were detected in this small cohort, further studies are required to underpin the molecular mechanisms of the effect of metformin on GCs. WIDER IMPLICATIONS OF THE FINDINGS: The individual patient culture strategy combined with multifactorial experimental design strengthens the biological interpretation of the data. Collectively, these results support the notion that there is an inherent impairment in progesterone biosynthetic capacity of the GCs from women with PCOS. The positive, acute metabolic effect and the negative long-term steroidogenic effect on GCs following metformin exposure in vivo may have important implications for follicular development and luteinized GC function when the drug is used in clinical practice. STUDY FUNDING/COMPETING INTERESTS: No competing interests. This work was supported by the UK Medical Research Council Grant Reference number G0800250.[Abstract] [Full Text] [Related] [New Search]