These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.
    Author: Wu M, Chen WJ, Shen YH, Huang FZ, Li CH, Li SK.
    Journal: ACS Appl Mater Interfaces; 2014 Sep 10; 6(17):15052-60. PubMed ID: 25144940.
    Abstract:
    In this paper, we report a novel matchlike zinc oxide (ZnO)/gold (Au) heterostructure with plasmonic-enhanced photoelectrochemical (PEC) activity for solar hydrogen production. The matchlike heterostructure with Au nanoparticles coated on the tip of ZnO nanorods is in situ grown on a zinc (Zn) substrate by using a facile hydrothermal and photoreduction combined approach. This unique heterostructure exhibits plasmonic-enhanced light absorption, efficient charge separation and transportation properties with tunable Au contents. The photocurrent density of the matchlike ZnO/Au heterostructure reaches 9.11 mA/cm(2) at an applied potential of 1.0 V (vs Ag/AgCl) with an Au/Zn atomic ratio of 0.039, which is much higher than that of the pristine ZnO nanorod array (0.33 mA/cm(2)). Moreover, the solar-to-hydrogen conversion efficiency of this special heterostructure can reach 0.48%, 16 times higher than that of the pristine ZnO nanorod array (0.03%). What is more, the efficiency could be further improved by optimizing the Au content of the heterostructure. The formation mechanism of such a unique heterostructure is proposed to explain the plasmonic-enhanced PEC performance. This study might contribute to the rational design of the visible-light-responsive plasmonic semiconductor/metal heterostructure photoanode to harvest the solar spectrum.
    [Abstract] [Full Text] [Related] [New Search]