These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant.
    Author: Tu CK, Silverman DN, Forsman C, Jonsson BH, Lindskog S.
    Journal: Biochemistry; 1989 Sep 19; 28(19):7913-8. PubMed ID: 2514797.
    Abstract:
    To test the hypothesis that histidine 64 in the active site of human carbonic anhydrase II functions as a proton-transfer group in the catalysis of CO2 hydration, we have studied a site-specific mutant having histidine 64 replaced by alanine, which cannot transfer protons. The steady-state kinetics of CO2 hydration has been measured as well as the exchange of 18O between CO2 and water at chemical equilibrium. The results show that the rate of exchange between CO2 and HCO3- at chemical equilibrium is essentially unaffected by the amino acid substitution at pH greater than 7.0 and slightly decreased in the mutant at pH less than 7.0 (by a factor of 2 at pH 6.0). However, in the absence of buffer the rate of release from the active site of water bearing substrate oxygen is smaller by as much as 20-fold for the mutant as compared to unmodified enzyme. Furthermore, in the unmodified enzyme water release is inhibited by micromolar concentrations of Cu2+ ions, but no such inhibition is observed with the alanine 64 variant. These results suggest that the mutation has specifically affected the rate of proton transfer between the active site and the reaction medium. This kinetic defect in the mutant can be overcome by increasing the concentration of certain buffers, such as imidazole and 1-methylimidazole, but not by others buffers, such as MOPS or HEPES. Similarly, the maximal rate of CO2 hydration at steady state catalyzed by the alanine 64 variant is very low in the presence of MOPS or TAPS buffers but considerably higher in the presence of imidazole derivatives.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]