These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Delivery of siRNA by MRI-visible nanovehicles to overcome drug resistance in MCF-7/ADR human breast cancer cells. Author: Lin G, Zhu W, Yang L, Wu J, Lin B, Xu Y, Cheng Z, Xia C, Gong Q, Song B, Ai H. Journal: Biomaterials; 2014 Nov; 35(35):9495-507. PubMed ID: 25155545. Abstract: Multidrug resistance (MDR) is one of the major barriers in cancer chemotherapy. P-glycoprotein (P-gp), a cell membrane protein in MDR, also a member of ATP-Binding cassette (ABC) transporter, can increase the efflux of various hydrophobic anticancer drugs. In this study, polycation/iron oxide nanocomposites, were chosen as small interfering RNA (siRNA) carriers to overcome MDR through silencing of the target messenger RNA and subsequently reducing the expression of P-gp. Amphiphilic low molecular weight polyethylenimine was designed with different alkylation groups and alkylation degree to form various nanocarriers with clustered iron oxide nanoparticles inside and carrying siRNA through electrostatic interaction. A few optimized formulations can form stable nanocomplexes with siRNA and protect them from degradation during delivery, and lead to effective silencing effect that comparable to a commercial golden standard transfection agent, Lipofectamine 2000. Human breast cancer MCF-7/ADR cells can be vulnerable to doxorubicin treatment after the strong downregulation of P-gp through siRNA tranfection. Once transfected with these nanocomplexes, the cells displayed significant contrast enhancement against non-transfected cells under a 3T clinical MRI scanner. These nanocomposites also demonstrated their downregulation efficacy of P-gp in a MCF-7/ADR orthotopic tumor model in mice.[Abstract] [Full Text] [Related] [New Search]