These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase.
    Author: Xu W, Kantrowitz ER.
    Journal: Biochemistry; 1989 Dec 26; 28(26):9937-43. PubMed ID: 2515892.
    Abstract:
    Carbamoyl phosphate is held in the active site of Escherichia coli aspartate transcarbamoylase by a variety of interactions with specific side chains of the enzyme. In particular, the carbonyl group of carbamoyl phosphate interacts with Thr-55, Arg-105, and His-134. Site-specific mutagenesis was used to create a mutant version of the enzyme in which Thr-55 was replaced by alanine in order to help define the role of this residue in the catalytic mechanism. The Thr-55----Ala holoenzyme exhibits a 4.7-fold reduction in maximal observed specific activity, no alteration in aspartate cooperativity, and a small reduction in carbamoyl phosphate cooperativity. The mutation also causes 14-fold and 35-fold increases in the carbamoyl phosphate and aspartate concentrations required for half the maximal observed specific activity, respectively. Circular dichroism spectroscopy has shown that saturating carbamoyl phosphate does not induce a conformational change in the Thr-55----Ala holoenzyme as it does for the wild-type holoenzyme. The kinetic properties of the Thr-55----Ala catalytic subunit are altered to a greater extent than the mutant holoenzyme. The mutant catalytic subunit cannot be saturated by either substrate under the experimental conditions. Furthermore, as opposed to the wild-type catalytic subunit, the Thr-55----Ala catalytic subunit shows cooperativity for aspartate and can be activated by N-(phosphonoacetyl)-L-aspartate in the presence of low concentrations of aspartate and high concentrations of carbamoyl phosphate. As deduced by circular dichroism spectroscopy, the conformation of the Thr-55----Ala catalytic subunit in the absence of active-site ligands is distinctly different from the wild-type catalytic subunit.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]