These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study.
    Author: Kacprzyk-Stokowiec A, Kulma M, Traczyk G, Kwiatkowska K, Sobota A, Dadlez M.
    Journal: J Biol Chem; 2014 Oct 10; 289(41):28738-52. PubMed ID: 25164812.
    Abstract:
    Perfringolysin O (PFO) is a toxic protein that binds to cholesterol-containing membranes, oligomerizes, and forms a β-barrel transmembrane pore, leading to cell lysis. Previous studies have uncovered the sequence of events in this multistage structural transition to a considerable detail, but the underlying molecular mechanisms are not yet fully understood. By measuring hydrogen-deuterium exchange patterns of peptide bond amide protons monitored by mass spectrometry (MS), we have mapped structural changes in PFO and its variant bearing a point mutation during incorporation to the lipid environment. We have defined all regions that undergo structural changes caused by the interaction with the lipid environment both in wild-type PFO, thus providing new experimental constraints for molecular modeling of the pore formation process, and in a point mutant, W165T, for which the pore formation process is known to be inefficient. We have demonstrated that point mutation W165T causes destabilization of protein solution structure, strongest for domain D1, which interrupts the pathway of structural transitions in other domains necessary for proper oligomerization in the membrane. In PFO, the strongest changes accompanying binding to the membrane focus in D1; the C-terminal part of D4; and strands β1, β4, and β5 of D3. These changes were much weaker for PFO(W165T) lipo where substantial stabilization was observed only in D4 domain. In this study, the application of hydrogen-deuterium exchange analysis monitored by MS provided new insight into conformational changes of PFO associated with the membrane binding, oligomerization, and lytic pore formation.
    [Abstract] [Full Text] [Related] [New Search]