These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multiple Orientia tsutsugamushi ankyrin repeat proteins interact with SCF1 ubiquitin ligase complex and eukaryotic elongation factor 1 α.
    Author: Min CK, Kwon YJ, Ha NY, Cho BA, Kim JM, Kwon EK, Kim YS, Choi MS, Kim IS, Cho NH.
    Journal: PLoS One; 2014; 9(8):e105652. PubMed ID: 25166298.
    Abstract:
    BACKGROUND: Orientia tsutsugamushi, the causative agent of scrub typhus, is an obligate intracellular bacterium. Previously, a large number of genes that encode proteins containing eukaryotic protein-protein interaction motifs such as ankyrin-repeat (Ank) domains were identified in the O. tsutsugamushi genome. However, little is known about the Ank protein function in O. tsutsugamushi. METHODOLOGY/PRINCIPAL FINDINGS: To characterize the function of Ank proteins, we investigated a group of Ank proteins containing an F-box-like domain in the C-terminus in addition to the Ank domains. All nine selected ank genes were expressed at the transcriptional level in host cells infected with O. tsutsugamushi, and specific antibody responses against three Ank proteins were detected in the serum from human patients, indicating an active expression of the bacterial Ank proteins post infection. When ectopically expressed in HeLa cells, the Ank proteins of O. tsutsugamushi were consistently found in the nucleus and/or cytoplasm. In GST pull-down assays, multiple Ank proteins specifically interacted with Cullin1 and Skp1, core components of the SCF1 ubiquitin ligase complex, as well as the eukaryotic elongation factor 1 α (EF1α). Moreover, one Ank protein co-localized with the identified host targets and induced downregulation of EF1α potentially via enhanced ubiquitination. The downregulation of EF1α was observed consistently in diverse host cell types infected with O. tsutsugamushi. CONCLUSION/SIGNIFICANCE: These results suggest that conserved targeting and subsequent degradation of EF1α by multiple O. tsutsugamushi Ank proteins could be a novel bacterial strategy for replication and/or pathogenesis during mammalian host infection.
    [Abstract] [Full Text] [Related] [New Search]