These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Impact of modulating phase duration on electrically evoked auditory brainstem responses obtained during cochlear implantation. Author: Bonne NX, Douchement D, Hosana G, Desruelles J, Fayoux P, Ruzza I, Vincent C. Journal: Cochlear Implants Int; 2015 May; 16(3):168-74. PubMed ID: 25167217. Abstract: Objective To investigate the effect of increasing phase duration (pulse width, T-pulse) using a biphasic pulse composed of an initial anodic active phase followed by a balancing cathodic phase on the electrically evoked auditory brainstem responses (eABRs) recorded at the time of cochlear implantation. Design eABRs recorded during 188 surgeries for cochlear implantation from 1999 to 2006 in a single center were retrospectively reviewed by two independent observers. All patients were fitted with a NEURELEC cochlear implant (CI) device, initially DIGISONIC(®) then DIGISONIC SP(®) (2004-2006). Result Immediately following cochlear implantation, stimulation by the CI resulted in reliable wave III and V eABR waveforms (mean wave III latency 2.23 ± 0.38 ms SD and wave V latency 4.28 ± 0.42 ms SD). Latencies followed an apical to basal gradient (0.32 ms increase in mean eV latency and 0.12 ms for eIII latency). With increasing phase duration, wave III and wave V latencies significantly decreased in association with a shortening of the eIII-eV interwave gap, while amplitudes of both waves increased. Conclusion The impact of increasing phase duration on latency and amplitude of brainstem responses in a large set of patients implanted with NEURELEC CIs was reported.[Abstract] [Full Text] [Related] [New Search]