These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18].
    Author: Clark L, Orain JC, Bert F, De Vries MA, Aidoudi FH, Morris RE, Lightfoot P, Lord JS, Telling MT, Bonville P, Attfield JP, Mendels P, Harrison A.
    Journal: Phys Rev Lett; 2013 May 17; 110(20):207208. PubMed ID: 25167449.
    Abstract:
    The vanadium oxyfluoride [NH(4)](2)[C(7)H(14)N][V(7)O(6)F(18)] (DQVOF) is a geometrically frustrated magnetic bilayer material. The structure consists of S = 1/2 kagome planes of V(4+) d(1) ions with S = 1 V(3+) d(2) ions located between the kagome layers. Muon spin relaxation measurements demonstrate the absence of spin freezing down to 40 mK despite an energy scale of 60 K for antiferromagnetic exchange interactions. From magnetization and heat capacity measurements we conclude that the S = 1 spins of the interplane V(3+) ions are weakly coupled to the kagome layers, such that DQVOF can be viewed as an experimental model for S = 1/2 kagome physics, and that it displays a gapless spin liquid ground state.
    [Abstract] [Full Text] [Related] [New Search]