These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Diphtheria toxin treatment of Pet-1-Cre floxed diphtheria toxin receptor mice disrupts thermoregulation without affecting respiratory chemoreception. Author: Cerpa V, Gonzalez A, Richerson GB. Journal: Neuroscience; 2014 Oct 24; 279():65-76. PubMed ID: 25171790. Abstract: In genetically-modified Lmx1b(f/f/p) mice, selective deletion of LMX1B in Pet-1 expressing cells leads to failure of embryonic development of serotonin (5-HT) neurons. As adults, these mice have a decreased hypercapnic ventilatory response and abnormal thermoregulation. This mouse model has been valuable in defining the normal role of 5-HT neurons, but it is possible that developmental compensation reduces the severity of observed deficits. Here we studied mice genetically modified to express diphtheria toxin receptors (DTR) on Pet-1 expressing neurons (Pet-1-Cre/floxed DTR or Pet1/DTR mice). These mice developed with a normal complement of 5-HT neurons. As adults, systemic treatment with 2-35μg of diphtheria toxin (DT) reduced the number of tryptophan hydroxylase-immunoreactive (TpOH-ir) neurons in the raphe nuclei and ventrolateral medulla by 80%. There were no effects of DT on minute ventilation (VE) or the ventilatory response to hypercapnia or hypoxia. At an ambient temperature (TA) of 24°C, all Pet1/DTR mice dropped their body temperature (TB) below 35°C after DT treatment, but the latency was shorter in males than females (3.0±0.37 vs. 4.57±0.29days, respectively; p<0.001). One week after DT treatment, mice were challenged by dropping TA from 37°C to 24°C, which caused TB to decrease more in males than in females (29.7±0.31°C vs. 33.0±1.3°C, p<0.01). We conclude that the 20% of 5-HT neurons that remain after DT treatment in Pet1/DTR mice are sufficient to maintain normal baseline breathing and a normal response to CO2, while those affected include some essential for thermoregulation, in males more than females. In comparison to models with deficient embryonic development of 5-HT neurons, acute deletion of 5-HT neurons in adults leads to a greater defect in thermoregulation, suggesting that significant developmental compensation can occur.[Abstract] [Full Text] [Related] [New Search]