These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The effect of full/partial UV-irradiation of TiO2 films on altering the behavior of fibrinogen and platelets. Author: Chen J, Zhao A, Chen H, Liao Y, Yang P, Sun H, Huang N. Journal: Colloids Surf B Biointerfaces; 2014 Oct 01; 122():709-718. PubMed ID: 25172575. Abstract: Titanium oxide (TiO2) thin film is a potential candidate for the surface modification of blood-contacting devices. It has previously been reported that ultraviolet light (UV) irradiation could alter the biocompatibility of TiO2 films. However, the effect of UV-irradiated TiO2 films on blood compatibility has rarely been reported. This study attempts to determine: (1) whether UV-irradiation of TiO2 films enhances their blood compatibility, (2) the interaction between UV-irradiated TiO2 films, fibrinogen (Fgn), and platelets, especially how Fgn and platelets respond to the geometry of the partially UV-irradiated TiO2 film surface. Anatase TiO2 films were subjected to full and partial UV-irradiation. Full UV-irradiation improved the blood compatibility of TiO2 films by almost completely inhibiting the adhesion and activation of platelets, strongly suppressing the adsorption and conformational change of Fgn, and preventing the formation of fibrin fibers. Additionally, hemolysis was not observed. After partial UV-irradiation, the regions where Fgn adsorption was reduced (Fgn-dark regions) were formed at regions where UV-irradiation had occurred, but were extended in comparison with the UV-irradiated regions, which could be related to the generation and diffusion of reactive oxygen species (ROS) on the UV-irradiated TiO2 surface. It is worthwhile to study how ROS altered the nature of TiO2 films, thereby enhancing their blood compatibility. Furthermore, platelets were found adhering to the Fgn-adsorbed regions (Fgn-bright regions) selectively, suggesting that the inhibition of platelet adhesion could be related to the suppression of Fgn adsorption on the UV-irradiated TiO2 surface. It was also noted that platelet surface coverage (Sp) was not linearly correlated with Fgn-bright region surface coverage (Sf), which indicated that the adhesion and spreading of platelets were regulated by both Sf and the geometry of Fgn.[Abstract] [Full Text] [Related] [New Search]