These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetics of degradation of carbendazim by B. subtilis strains: possibility of in situ detoxification. Author: Salunkhe VP, Sawant IS, Banerjee K, Wadkar PN, Sawant SD, Hingmire SA. Journal: Environ Monit Assess; 2014 Dec; 186(12):8599-610. PubMed ID: 25179945. Abstract: Food safety is a global concern due to the increased use of pesticides in agriculture. In grapes, carbendazim is one of the frequently detected fungicides. However, it is amenable to biodegradation. In this study, we aimed to assess the degradation of carbendazim by four Bacillus subtilis strains, which had earlier shown potential for biocontrol of grape diseases. In liquid medium, each of the four strains, namely, DR-39, CS-126, TL-171, and TS-204, could utilize carbendazim as the sole carbon source. The half-life was minimized from 8.4 days in the uninoculated spiked control to 4.0-6.2 days by the four strains. In Thompson Seedless sprayed with carbendazim at 1.0 g L(-1), the residue on grape berries in control was 0.44 mg kg(-1) after 25 days of application, whereas in grapes treated with the four B. subtilis strains, the residues had decreased to 0.02 mg kg(-1). The degradation kinetics showed low half-lives of 3.1 to 5.2 days in treated grapes as compared to 8.8 days in control. In inoculated soils, the half-lives were 5.9 to 7.6 days in autoclaved and 6.5 to 7.2 days in nonautoclaved soils as compared to 8.2 and 8.0 days in respective controls. The growth dynamics of these strains in all the three matrices was not affected by presence of carbendazim. Bacillus strains TS-204 and TL-171 showed higher degradation rate than the other two strains in all the three matrices and show promise for in situ biodegradation of carbendazim.[Abstract] [Full Text] [Related] [New Search]